鍛件廠家表面質(zhì)量的檢驗(yàn)普通來講是屬于非毀壞性的檢驗(yàn),平時(shí)用肉眼或低倍放大鏡進(jìn)行搜檢,須要時(shí)也接納無損探傷的技巧。而里面質(zhì)量的檢驗(yàn),因?yàn)槠渌褭z內(nèi)容的要求,有些必需接納毀壞性檢驗(yàn),也即是平時(shí)所講的解剖實(shí)驗(yàn),如低倍檢驗(yàn)、斷口檢驗(yàn)、高倍構(gòu)造檢驗(yàn)、化學(xué)成分說明和力學(xué)性能測試等,有些則也能夠接納無損檢驗(yàn)的技巧,而為了更精準(zhǔn)地評(píng)估鍛件質(zhì)量,應(yīng)將毀壞性實(shí)驗(yàn)技巧與無損檢驗(yàn)技巧互相連結(jié)起來進(jìn)行應(yīng)用。而為了從深檔次上說明鍛件質(zhì)量題目,進(jìn)行機(jī)理性的研究事情還要籍助于透射型或掃描型的電子顯微鏡、電子探針等。
平時(shí)鍛件里面質(zhì)量的檢驗(yàn)技巧可歸結(jié)為:宏觀構(gòu)造檢驗(yàn)法、微觀構(gòu)造檢驗(yàn)法、力學(xué)性能檢驗(yàn)、化學(xué)成分說明法及無損檢驗(yàn)法。
宏觀構(gòu)造檢驗(yàn)即是接納目視或者低倍放大鏡(普通倍數(shù)在30×以下)來調(diào)查說明鍛的低倍構(gòu)造特性的一種檢驗(yàn)。對(duì)于鍛件的宏觀構(gòu)造檢驗(yàn)常用的技巧有低倍侵蝕法(包含熱蝕法、冷蝕法及電解侵蝕法)、斷口實(shí)驗(yàn)法和硫印法。
低倍侵蝕法用以搜檢布局鋼、不銹鋼、高溫合金、鋁及鋁合金、鎂及鎂合金、銅合金、鈦合金等質(zhì)料鍛件的裂紋、折疊、縮孔、氣孔偏析、白點(diǎn)、疏松、非金屬同化、偏析會(huì)聚、流線的分布形式、晶粒大小及分布等。只但是對(duì)于差別的質(zhì)料閃現(xiàn)低倍構(gòu)造時(shí)接納的浸蝕劑和浸蝕的規(guī)范差別。
斷口實(shí)驗(yàn)法用以搜檢布局鋼、不銹鋼(奧氏體型除外)的白點(diǎn)、層狀、內(nèi)裂等缺點(diǎn)、搜檢彈簧鋼鍛件的石墨碳及上述各鋼種的過熱、過燒等,對(duì)于鋁、鎂、銅等合金用來搜檢其晶粒是否細(xì)致勻稱,是否有氧化膜、氧化物同化等缺點(diǎn)。
而硫印法主要運(yùn)用于某些布局鋼的大型鍛件,用以搜檢其硫的分布是否勻稱及硫含量的幾許。
除布局鋼、不銹鋼鍛件用于低倍搜檢的試片不進(jìn)行最終熱處分外,其余質(zhì)料的鍛件普通都經(jīng)過最終熱處分后才進(jìn)行低倍檢驗(yàn)。
斷面試樣普通都進(jìn)行劃定的熱處分。
微觀構(gòu)造檢驗(yàn)法則是行使光學(xué)顯微鏡來搜檢種種質(zhì)料商標(biāo)鍛件的顯微構(gòu)造。搜檢的名目普通有素質(zhì)晶粒度,或者是在劃定溫度下的晶粒度,即現(xiàn)實(shí)晶粒度,非金屬同化物,顯微構(gòu)造如脫碳層、共晶碳化物不勻稱度,過熱、過燒構(gòu)造及其它要求的顯微構(gòu)造等。
力學(xué)性能和工藝性能的檢驗(yàn)則是對(duì)曾經(jīng)過劃定的最終熱處分的鍛件和試片加工成劃定試樣后行使拉力實(shí)驗(yàn)機(jī)、打擊實(shí)驗(yàn)機(jī)、永遠(yuǎn)實(shí)驗(yàn)機(jī)、委靡實(shí)驗(yàn)機(jī)、硬度計(jì)等儀器來進(jìn)行力學(xué)性能及工藝性能數(shù)值的測定。
化學(xué)成分的測試普通是接納化學(xué)說明法或光譜說明法對(duì)鍛件的成分進(jìn)行說明測試,跟著科學(xué)技術(shù)的發(fā)展,無論是化學(xué)說明或是光譜說明其說明的手段都有了進(jìn)步。對(duì)于光譜說明法而言,當(dāng)今已不單純接納看譜法和攝譜法來進(jìn)行成分說明,新出現(xiàn)的光電光譜儀不但說明速率快,并且精準(zhǔn)性也大大地進(jìn)步了,而等離子光電光譜儀的出現(xiàn)更大大地進(jìn)步了說明精度,其說明精度可達(dá)10-6級(jí),這對(duì)于說明高溫合金鍛件中的微量有害雜質(zhì)如Pb、As、Sn、Sb、Bi等短長常卓有成效的技巧。
以上所說的技巧,無論是宏觀構(gòu)造檢驗(yàn)法,或是微觀構(gòu)造檢驗(yàn)法或性能及成分測定法,均屬于毀壞性的實(shí)驗(yàn)技巧,對(duì)于某些緊張的、大型的鍛件毀壞性的技巧已不行徹底適應(yīng)質(zhì)量檢驗(yàn)的要求,這一方面是因?yàn)樘唤?jīng)濟(jì),另一方面主要是為了避免毀壞性搜檢的片面性。無損檢驗(yàn)技術(shù)的發(fā)展為鍛件質(zhì)量檢驗(yàn)提供了更好更美滿的手段。
對(duì)于鍛件的質(zhì)量檢驗(yàn)所接納的無損檢驗(yàn)技巧普通有:磁粉檢驗(yàn)法、滲透檢驗(yàn)法、渦流檢驗(yàn)法、超聲波檢驗(yàn)法等。
磁粉檢驗(yàn)法寬泛地用于搜檢鐵磁性金屬或合金鍛件的表面或近表面的缺點(diǎn),如裂紋、發(fā)紋、白點(diǎn)、非金屬同化、分層、折疊、碳化物或鐵素體帶等。
該技巧僅適合于鐵磁性質(zhì)料鍛件的檢驗(yàn),對(duì)于奧氏體鋼制成的鍛件不適于接納該技巧。
滲透檢驗(yàn)法除能搜檢磁性質(zhì)料鍛件外,還能搜檢非鐵磁性質(zhì)料鍛件的表面缺點(diǎn),如裂紋、疏松、折疊等,普通只用于搜檢非鐵磁性質(zhì)料鍛件的表面缺點(diǎn),不行發(fā)現(xiàn)隱在表面以下的缺點(diǎn)。
渦流檢驗(yàn)法用以搜檢導(dǎo)電質(zhì)料的表面或近表面的缺點(diǎn)。
The inspection of the surface quality of forgings is generally a non-destructive inspection. It is usually inspected with the naked eye or a low magnification magnifying glass, and the technique of nondestructive testing is also accepted when necessary. In the quality inspection, because of the requirements of the inspection content, some must accept the destructive test, that is, the anatomical experiments usually mentioned, such as low-power test, fracture test, high-structural test, chemical composition description and mechanical property test. Etc. Some can also accept non-destructive testing techniques, and in order to more accurately assess the quality of forgings, destructive experimental techniques and non-destructive testing techniques should be linked together for application. In order to explain the quality problems of forgings from the deep grades, the mechanism research is to be assisted by transmission or scanning electron microscopes, electron probes, and the like.
The quality inspection techniques in forgings can be summarized as follows: macroscopic structural test method, microstructural test method, mechanical property test, chemical composition description method and nondestructive test method.
The macroscopic structural test is a test that accepts a visual or low magnification magnifying glass (normal multiples below 30×) to investigate the low-fold structural characteristics of the forging. Common techniques for the macroscopic structural inspection of forgings are low-penetration methods (including thermal erosion, cold erosion and electrolytic erosion), fracture experiments and sulfur printing.
The low-frequency erosion method is used to search for cracks, folds, shrinkage holes, pore segregation, white spots, looseness, and forgings of materials such as steel, stainless steel, high-temperature alloy, aluminum and aluminum alloy, magnesium and magnesium alloy, copper alloy, and titanium alloy. Non-metal assimilation, segregation and convergence, distribution patterns of streamlines, grain size and distribution, etc. Only for differential materials, the difference in specifications of the etchant and etch received during the low-fold construction is shown.
The fracture test method is used to check the defects such as white spots, layered and internal cracks of the layout steel and stainless steel (excluding the austenitic type), the graphite carbon of the spring steel forgings, and the overheating and overheating of the above steel grades. For aluminum, magnesium, copper and other alloys used to check whether the crystal grains are finely symmetrical, whether there are defects such as oxide film and oxide assimilation.
The sulphur printing method is mainly used for large forgings of some layout steels, to check whether the distribution of sulfur is symmetrical and the sulfur content is a few.
Except for layout steel and stainless steel forgings, the test pieces for low-level inspection are not subjected to the final heat treatment, and the forgings of the other materials are generally subjected to the final heat treatment before the low-power test.
The section specimens are generally subjected to delineated heat treatment.
The microstructural test rule is to use an optical microscope to search the microstructure of various trademark forgings. The name of the inspection is generally of a quality grain size, or the grain size at the delineated temperature, that is, the actual grain size, the non-metal assimilates, the microstructure such as the decarburization layer, the eutectic carbide unevenness, Overheated, overfired structures and other required microstructures.
The test of mechanical properties and process performance is to apply the tensile test machine, the impact test machine, the forever test machine, the euphemism test machine, the hardness tester, etc. to the forged piece and the test piece which have been demarcated for the final heat treatment. The instrument is used to determine the mechanical properties and process performance values.
The chemical composition test is generally to accept the chemical description method or the spectral description method to explain and test the composition of the forging part. With the development of science and technology, both the chemical explanation and the spectrogram indicate the means of explanation. For the spectroscopic method, the spectroscopic and spectroscopic methods are not simply accepted for composition description. The emerging optoelectronic spectrometer not only shows that the rate is fast, but also the accuracy is greatly improved, and the appearance of the plasma photoelectric spectrometer is more The accuracy of the description has been greatly improved, and the accuracy of the description is up to 10-6. This is an effective technique for explaining the short and long-term harmful impurities such as Pb, As, Sn, Sb, Bi, etc. in the high-temperature alloy forgings.
The techniques mentioned above, whether it is macroscopic structural test, or microstructural test or performance and composition determination, are destructive experimental techniques. For some nervous, large forgings, the destructive skills are not complete. Adapting to the requirements of quality inspection, this aspect is because it is too uneconomical, and on the other hand, it is mainly to avoid the one-sidedness of destructive inspection. The development of non-destructive testing technology provides a better and more satisfactory means for forging quality inspection.
The non-destructive testing techniques accepted for the quality inspection of forgings are: magnetic particle test, penetration test, eddy current test, ultrasonic test, etc.
Magnetic particle inspection is widely used to detect defects on the surface or near surface of ferromagnetic metal or alloy forgings, such as cracks, hair lines, white spots, non-metal assimilation, delamination, folding, carbide or ferrite bands.
This technique is only suitable for the inspection of ferromagnetic material forgings, and forgings made of austenitic steel are not suitable for this technique.
In addition to the inspection of magnetic material forgings, the penetrant inspection method can also detect the surface defects of non-ferromagnetic material forgings, such as cracks, looseness, folding, etc., which are generally only used to check the surface defects of non-ferromagnetic forgings. The disadvantages hidden below the surface.
Eddy current testing is used to check for defects in the surface or near surface of conductive materials.